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ABSTRACT

Some combat simulation models that use attrition equations employ a two-stage

* procedure to compute attrition to aircraft: first, a number of sorties killed is computed and

then it is converted to a number of aircraft killed. This paper uses probability theory to

derive several different formulas that could be used to convert sorties killed to aircraft kii4.;

in the case where sortie rates are greater than 1. (If sortie rates do not exceed 1, it is
reasonable to let aircraft killed equal sorties killed.) Several possible formulas for the

expected number of successful sorties flown also are derived. A number of inequality
relationships among tqese formulas are proved. The commonly used formula: aircraft

killed = sorties killed + sortie rate, is found to produce the smallest results of all the

formulas derived. One of the alternative formulas has been implemented in the NAVMOD
naval combat model.

* 0.
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A. INTRODUCTION

In general, an attrition equation takes a number of shooters, S, and a number of

targets, T, and computes a number of targets killed

T = f(S,T;l) ,(I)

where p is some set of effectiveness parameters (e.g., detection and kill probabilities).

Suppose, however, that the targets (and perhaps the shooters too) are aircraft with some

sortie rate. Let rt be the sortie rate for targets and rs, the rate for shooters. One way of

computing the number of targets killed is to farst compute the number of target sorties killed

T,= f(rS,rtT;p) (2)

and to then let

Ts/r t  if rt > 1

T= s  if rt . (3)

If sortie rates do not exceed 1.0, they can be regarded as "availability fractions," and the

above attrition method is certainly reasonable. In this case, the attrition method treats each

sortie as an aircraft participating in combat, thus a sortie killed results in an aircraft killed.

If the sortie rate rt is greater than 1.0, the above approach results in the percentage

of sorties killed equaling the percentage of aircraft killed. Potential problems can arise,

i however, because of the dynamics of flying sorties over a time period of combat. In the

words of L.B. Anderson (Reference [31):

This method for considering sortie rates other than 1.0 is the same as is

used in IDAGAM I (see References [11 and [21) and appears to give

reasonable results. However, it cannot be theoretically justified for sortie

rates greater than 1.0, because OPTSA (and IDAGAM I) assesses attrition

once per day, while multiple sorties per day imply that attrition can occur on

the first sortie (which would affect the outcome one way) or on later sorties
(which would affect the outcome a different way). If further research

indicates that this variance in outcome is significant, then attrition should be

assessed more frequently than once per day. For the time being, note that if

the number of sorties killed as given by [equation (2)] is correct, then

(for rt > 1) [equation (3)j would give a lower bound on the number of



aircraft killed--because, if less than T/r t aircraft are killed, then the number

of sorties killed would be less than T., even if all aircraft are killed on their

first sortie. On the other hand, for rt > 1, [equation (2)] might overestimate

the number of sorties killed--because some aircraft on both sides would be
killed on their first sortie; and so there would be, on the average, less than

rtT targets and less than rsS shooters.

Suppose that it is not desired (perhaps because of computer time limitations) to
assess attrition more than once per time period (i.e., assessment cycle) and sortie rates (per
time period) exceed 1.0. Then the results of a combat simulation could be sensitive to
whether or not aircraft kills are determined by first computing sorties killed using an

equation like (2) and, if so, to the particular equation used to compute aircraft killed from
sorties killed. Ii might thus be instructive to develop and examine several approaches for

computing aircraft killed when sortie rates exceed 1.0. As a start, this paper addresses the
more restrictive question: given that it is reasonable to compute sorties killed using an
attrition equation such as (2), what are some possible alternatives to equation (3) for
converting sorties killed to aircraft killed when sortie rates exceed 1.0?

This paper is partially motivated by the fact that one such alternative formula was
deveiupW caiiei and has been implewented as an option (-,,,hcn sortie rates exceed 1.0) in

some places of the NAVMOD model (Reference [41). This formula,

"FT [1- ( "I - Tt

t+ J (4)

has the interpretation that the probability an aircraft is killed on a particulai sortie can be
approximated by the total sorties killed divided by the total sorties, i.e., TjrtT; an aircraft is

killed unless it survives all of the rt sorties it flies. The natural questions arise: How does
equation (4) compare to equation (3)? What are some other interpretations of equation (4)?
Are there yet other equations that might provide reasonable ways of converting sorties
killed to aircraft killed?

This paper explores some aspects of these issues. Section B derives some results
on sortie dynamics in the simplest attrition process: the one where a sortie is killed with
some constant probability. Sections C and D derive and explore several formulas that
might be reasonable to convert sorties killed to aircraft killed. The results are presented in

Section C; proofs are given in Section D. A., an excursion, Section r uiiefly examines a

2
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certain probabilistic experiment, and draws some connections between it and the results of

Sections C and D. Section F summarizes the paper's results and suggests some further

research topics.

The formulas for aircraft killed developed in this paper all assume that sortie rates

are greater than or equal to 1.0, and do not make sense for sortie rates less than 1.0. In this

latter case, however, it is perfectly reasonable to let aircraft killed equal sorties killed.

Furthermore, all the formulas have the "continuity" property that when the formulas are

evaluated at a sortie rate of (exactly) 1.0, the resultant number of aircraft killed is equal to

the number of sorties killed. Accordingly, throughout the remainder of this paper, all sortie

rates are assumed to be greater than or equal to 1.0.

B. EXPECTED AIRCRAFT KILLS AND SUCCESSFUL SORTIES IN A
SIMPLE ATTRITION PROCESS

This section uses a different notation than the preceding section. Suppose that there

are A aircraft. An aircraft flying a sortie is killed on that sortie with probability p

(regardless of the number of aircraft or the number of enemy attackers). If killed, an

aircraft (obviously) can fly no more sorties. If not killed, the aircraft will fly another sortie,

unless it has already flown R successful sorties (where a "successful" sortie is simply a

sortie on which the aircraft has not been killed). R represents a sortie rate; assume that both

A and R are positive integers.

The expected number of aircraft killed clearly is given by

R
A = A [I (l--p) ];

note the similarity of this equation to equation (4) of the previous section. A more

interesting quantity is the expected number of successful sorties flown (which equals the
"total potential number of sorties," AR, less the number of sorties "killed or forestalled").

This is given by the following

Proposition: In the attrition process described above, the expected number of successful

sorties flown is given by
A(1-p) [1 -(p) ] .(5)

P

Qof: The total expected number of sorties flown is A multiplied by the expected number

of successful sorties flown by one aircraft. An aircraft flies zero successful sorties with

3
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probability p--i.e., if the aircraft is killed on its first sortie. It flies R successful sorties with

probability (1-p)R--i.e., the aircraft survives all the sorties it flies. If R=1, the proposition

follows forthwith. If R - 2, then for 1 _< k < R, an aircraft flies exactly k successful sorties

with probability (l-p)kp--i.e., the first k sorties are successful and the aircraft is killed on

the (k+l)St sortie. The expected number of successful sorties an aircraft flies is thus

Lk(l-p)'p + R(1-p)R .
k=1

The indicated sum can be evaluated by differentiating the formula for the sum of a

geometric series and multiplying by the appropriate factors; after algebraic simplification,

the proposition follows.

C. MAIN RESULTS

Throughout this section and Section D, for any nonnegative real x, Lxi will denote

the integer part of x, <x> will denote the fractional part of x, and Fxl will denote the

smallest integer greater than or equal to x.

I. AirraftKils

Theorems 1 through 6 consider a rectangular array of circles, R rows by A columns

(R and A are positive integers). Figure 1 shows the example R=6, A=5. Let K be some

positive integer that does not exceed RA. In each theorem, (the interiors of) exactly K

circles in the array are colored black, in a random manner to be described. Theorems I

through 6 each give formulas for the expected number of columns that contain at least one

black circle, (i.e., a circle the interior of which has been colored black), under various

assumptions about the distribution of the K black circles. (The term "white circle" indicates

a circle the interior of which has not been colored black.)

4



1 2 3 4 5=A

100000
200000100000
400O000
00000R=6 O00000

Figure 1. AN ARRAY OF CIRCLES

One can regard each column in the array described above as representing an aircraft
with a sortie rate of R; there are A aircraft. Each circle in the array represents a sortie.
Black circles represent sorties killed; the number (K) of such circles is extrinsically given.

An aircraft is killed if it does not survive all of its sorties; this corresponds to at least one
black circle appearing in the appropriate column of the array. Since Theorems 1 through 6
give the expected number of columns that contain at least one black circle, each of these

theorems provides a distinct way to convert a number of sorties killed (K) to an expected
number of aircraft killed. Theorems 1 and 3 below reproduce expressions (3) and (4)
presented in Section A, but in the context of probabilistic experiments with the array of

circles, which can be compared with other experiments.

Theorem 1. Assume that K is such that M = K/R is an integer. From the A columns
choose M columns randomly and uniformly (so that any particular size-M subset of the A
columns has an equal chance of being selected) and color each circle in each of these
columns black. Then the expected number of columns with at least one black circle is

NI(A,R,K) = K/R.

(Of course this result is obvious. But it puts the commonly used formula K/R for
converting sorties killed to aircraft killed in the context of a probabilistic experiment, which
can be compared to the experiments described in the theorems below.) 5

Theorem 2. (This generalizes Theorem I by considering any positive integer K < RA.)
Let I = LK/RJ. Choose I columns randomly and uniformly from the A columns and color

each circle in each of these columns black. If I < A, then choose (randomly and uniformly)
one additional column. From this column select K-RI circles randomly and uniformly and

5



color each of these circles black. (If K/R is an integer, K-RI=0.) Then the expected

number of columns with at least one black circle is

N2 (A,R,K) = FK/R1.

(Note that if K/R is an integer, then N2(A,R,K) = NI(A,R,K).)

Theorem 3. Assume that K is such that M = K/R is an integer. From each row, select M
circles (in such a manner that each subset of M of the A circles in the row is equally likely

to be chosen) and color them black. Treat different rows independently of one another.

Then the expected number of columns with at least one black circle is

N (ARK) =A~l~-~J I

(This is the same as equation (4) of Section A. Note that although it was derived for K/R

an integer, the formula can be evaluated whether or not this is the case.)
p

Theorem 4. (This generalizes Theorem 3 by considering any positive integer K _< RA.)
Let I = LKIRI. From each row, choose I circles at random (as in Theorem 3) and color

them black. Then select K - IR rows at random (uniformly) from the R rows; from each of
these rows choose (uniformly and independently of the other rows) one circle that has not p

already been colored black and color it black. Then the expected number of columns that

contain at least one black circle is
IRIR-K+KRJ IK4K- . RJ

N4(A,R,K) = A[141- L yRj ) ( L) ]

A A "
(Some special cases are as follows. If K _ R(A-1), then LK/RJ + 1 = A, and

1 - (1 + LK/RJ)/A is zero. If K = R(A-1), interpreting 00 as 1 yields a consistent result. If

K > R(A-1), N4 (A,R,K) becomes equal to A, as is consistent with the experiment. If K/R

is an integer, then the experiment reduces to the experiment of Theorem 3, and N4(A,R,K)
reduces to N3(A,R,K), as one would expect [with the proviso that 00 be interpreted as 1 in

the case K = R(A-1)].)

Theorem 5. From the array of RA circles, choose K circles at random in such a manner
that any size-K subset of the RA circles is equally likely to be chosen. It is clear that if
K > R(A-1), then each column will have at least one black circle. If K < R(A-1), then the

expected number of columns with at least one black circle is

6
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(A'R'K) = A -[ [(R(A-1))/(RA)]

Theorem 6. Choose LK/AJ rows at random (uniformly) from the R rows and color each

circle in each of these rows black. If K/A is not an integer, then choose one additional row

uniformly from those rows not previously chosen. From this row select L = K - ALK/AJ

circles (L is less than A) at random (in such a manner that any subset of size L is equally

likely to be chosen) and color them black. Then the expected number of columns with at

least one black circle is given by

N6(A,R,K) = min(K,A).

2. Expected Successful Sorties

Theorems 7 through 12 consider the experiments described in Theorems 1 through

6, respectively, and state formulas for the expected number of white circles in the array that

are not located (vertically) under some black circle. In the analogy between circles and

sorties, if black circles represent sorties killed, then white circles not located under a black

circle represent "successful sorties," flown before the column (aircraft) encounters a black

circle (is killed).

Theorm 7. For the experiment described in Theorem 1, the expected number of white
circles not located (vertically) under some black circle is given by

SI(A,R,K) = RA-K.

Theorem 8. For the experiment described in Theorem 2, the expected number of white
circles not located (vertically) under some black circle is given by

S2(A,R,K) = R(A-[K/RJ-l) + R-K+RK/RJ
K-Rj K/RJ + 1

Theorem 9. For the experiment described in Theorem 3, the expected number of white

circles not located (vertically) under some black circle is given by

S3 (A,R,K) = A(RA-K) [I( 1 _ K )R
]K RA

7



Theorem 0. For the experiment described in Theorem 4, the expected number of white

circles not located (vertically) under some black circle is

S 4(A,R,K) = A n=1 M= (R)~) !A A)

where I = LK/RJ, G = K-RI, and nonsensible combinatorial expressions1 are regarded as

zero.

Theorem I1. For the experiment described in Theorem 5, the expected number of white

circles not located (vertically) under some black circle is
RA-R)

S5(A,R,K) = A(RA-K) _ A l
(K+l1) RKj)**

If K _ R(A-1), the (numerator of the) second term should be regarded as zero.

Theorem 12. For the experiment described in Theorem 6, the expected number of white

circles not located (vertically) under some black circle is

S6 (ARK) = A(R-4.K/AJ) (R+I) (K-ALK/Aj)
1- -K/Al (14K/AJ) (24LK/Aj)

Note that if K/A is an integer, the second term is zero.

3. Inequalities Relating to Aircraft Kills

Recall the formulas representing expected numbers of aircraft killed that have been

stated in Theorems 1 through 6 in Section 1, above:

N,(A,R,K) = K/R

N2(A,R,K) = fK/Ri

N3(A,R,K) = A[ I-( I- , •
3 RA

I.e., expressions (N ) where M < 0, N < 0, and/or M > N. S

8
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N4(A,R,K) = A[ (1 (1 UA ]
4i A

A(1 - if K:5 R(A-1)
N5(A,R,K) = K KR

LA if K > R(A-1),

N6(A,R,K) = min(K,A).

This section states several inequalities regarding these formulas. Section C.4 provides a 0

summary of these inequalities; proofs are given in Section D.

Although Theorems 1 through 6 were developed from probabilistic experiments

which assumed that A, R, and K were positive integers, many of the formulas Ni(A,R,K)

can be evaluated for any positive real A, R, and K such that K 5 RA and R > 1. Similarly,

although Theorems 1 and 3 were developed assuming that K/R was a positive integer,
formulas NI(A,R,K) and N3(A,R,K) can be evaluated whether or not this is the case. For
conciseness in stating the theorems, two "assumption sets" will be used, defined thus:l0

Assumption Set 1: A, R, and K are positive real numbers such that K < RA and
R> 1;

Assumption Set 2: A, R, and K are positive integers such that K 5 RA.

Several theorems need the stronger Assumption Set 2, as noted in the statement of the 0

theorems.

First, note the trivial results that for any A, R, and K that satisfy Assumption Set 1,

NI(A,R,K) < N2(A,R,K)

and

N,(A,R,K) < N6(A,R,K)

(i.e., K/R _< rK/R] and K/R _< min(K,A)). Further results are stated as Theorems 13

through 19, below.

Theorem 13. For any A, R, and K that satisfy Assumption Set 2, N2(A.R,K) _

N6(A,R,K). (This is not necessarily true under Assumption Set 1.)

9
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Theorem 14. For any A, R, and K that satisfy Assumption Set 1, N3 (A,R,K) <

N6 (A,R,K).

Theorem 15. For any A, R, and K that satisfy Assumption Set 2,

N4 (A,R,K) - N6 (A,R,K)

and

N5(A,R,K) , N6 (A,R,K).

(N 5(A,R,K), and sometimes N4(A,R,K), are not defined for noninteger A, R, and K.)

Theorem 16. For any A, R, and K that satisfy Assumption Set 1, NI(A,R,K) -

N3(A,R,K).

Theorem 17. For any A, R, and K that satisfy Assumption Set 2, N2 (A,R,K) <

N4 (A,R,K). (If K/R is an integer, then of course N2(A,R,K) reduces to NI(A,R,K) and

N4(A,R,K) reduces to N3(A,R,K). It is not necessarily true that N2(A,R,K) - N3(A,R,K)

if K/R is not an integer.)

Theorem 18. For any A, R, and K that satisfy Assumption Set 2, N3 (A,R,K)

N4 (A,R,K). (The theorem is also true under Assumption Set I plus the additional

condition that L K/RJ + 1 !5 A. That is, under these conditions, N4 (A,R,K) is defined and

N3(A,R,K) < N4 (A,R,K).)

Theorem 19. For any A, R, and K that satisfy Assumption Set 2, N4 (A,R,K) <

N5(A,R,K). (N5(A,R,K) for its very definition assumes that A, R, and K are integers,

and the proofs given in Section D utilize the integrality of A, R, and K.) The proofs treat

the following cases separately:

(i) K > R(A-1) (in this trivial case, N4(A,R,K) = N5(A,R,K) = A),

4 (ii) K/R is an integer and K 5 R(A-1),

(iii) K < R and K5 _R(A-1), and

(iv) K/R is not an integer and R < K < R(A-1).

4
4. Summary of Ineoualities Relating to Aircraft Kills

The results of Section C.3 can be summarized as follows (a review of the formulas

Ni(A,R,K) and the assumption sets stated at the beginning of Section C.3 will be helpful).

(a) For any A, R, and K satisfying Assumption Set 1,

10
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NI(A,R,K)! N2(A,R,K)

5 and

NI(A,R,K) N3 (A,R,K) 5 N6(A,R,K).

Under Assumption Set 1: 1) there is no clear inequality relationship between
N,2(A,R,K) and N3(A,R,K), i.e., depending on the values of A, R, and K, N2(A,R,K)

a might be less than, or equal to, or greater than N3 (A,R,K); 2) the same is true of
N2 (A,R,K) and N6 (A,R,K); and 3) N4 (A,R,K) and N5 (A,R,K) are (in general)

undefined.

(b) For any A, R, and K satisfying Assumption Set 2,

N1 (A,R,K) :5 N2 (A,R,K) 5 N4 (A,R,K) ,

NI(A,R,K) ! N3 (A,R,K) !5 N4 (A,R,K) ,

and

N4 (A,R,K) 5 N5 (A,R,K) !5 N6 (A,R,K) .

Under Assumption Set 2, there is no clear inequality relationship between
N2 (A,R,K) and N3(A,R,K), unless K/R is an integer, as indicated below.

(c) For any A, R, and K such that Assumption Set 2 is satisfied and also K/R is an

integer,

N1 (A,R,K) = N2 (A,R,K) ,

N2(A,R,K) N3 (A,R,K) ,

N3(A,R,K) = N4 (A,R,K) ,

and

N4 (A,R,K)! N5 (A,R,K):5 N6 (A,R,K) .

5. Inegualities Relating to Exnjected Successful Sorties

Recall the three formulas developed in Theorems 7, 8, and 9 (see the discussion in
Section C.2, above, for interpretations of these formulas):



SI(A,R,K) = RA-K

S(AR,K) = R(A-QK/RJ-1)+ R-K+RIK/RJ
K-RLK/RJ+I

S 3(A,R,K) = -(RA-K) [ 1 -( 1 .7A-) R
K RA

Iheorem-.2. For any positive real A, R, and K such that K < RA and R _ 1 (i.e.,

Assumption Set 1),

S2(A,R,K) SI(A,R,K).

Theorm 2 1. For any positive real A, R, and K such that K < RA and R > 1,

S3(A,R,K) SI(A,R,K).

Depending on the values of A, R, and K, S2(A,R,K) may be feater than, equal to,

or less than S3(A,R,K). In numerical evaluations of the functions for several thousand

(integer) value combinations of A, R, and K, the relationships

S2(A,R,K) - S4(A,R,K),

S3(A,R,K) - S4 (A,R,K),

and

S4(AR,K) _. S5 (A,R,K) _> S6 (A,R,K)

always occurred. However, this paper does not present proofs of these hypotheses; it is
possible that some or all of them are false.

D. PROOFS OF RESULTS

1. AircrafLKill

Theorems 1 through 6 are proved below.

(1) Exactly M columns have black circles in them (and these columns are

completely filled with black circles); the rest of the columns have no black circles. Thus the

expected number of columns with at least one black circle is M, which equals K/R.

(2) If K/R is an integer, the reasoning in Theorem 1 applies. If not, then (recalling S

that I = LK/RJ) I columns are completely filled with black circles and one additional

column has K-RI black circles; if K/R is not an integer, K-RI 1. Thus the total (and

expected) number of columns with at least one black circle, if K/R is not an integer, is 1+1.

12
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Thus overall, the expected (total) number of columns with at least one black circle is

(3) The expected number of columns with at least one black circle is the number of

columns (A) multiplied by the probability that a particular column contains at least one

black circle--which is one minus the probability it contains no black circles. This latter

probability is the product (because different rows are treated independently of one another)

of the probabilities that a particular row does not have a black circle in the particular column

being considered. Each of these probabilities is

I _ (A-1 )/M = I - M/A -" I - K/(RA).

The desired formula follows forthwith.

(4) Recall that I = LK/RJ. If K/R is an integer, this theorem reduces to Theorem 3,

so assume that K/R is not integer. Since A, K, and R are integers and K/R is assumed to

be less than or equal to A, then I < A-1. (Thus all combinatorial expressions appearing

below are sensible.) A row with I circles will have a black circle at a particular column

location with probability
tS

CIi/l =
A row with I+1 circles will have a black circle at a particular column location with

probability

I+1 A "

There are R-K+IR rows with I black circles each and K-IR rows with I+1 black circles S

each. (It can be verified that these formulas imply that the total number of black circles is

K, as it should be.) Since different rows have circles chosen independently, the probability

a particular column contains no black circles is

R-K+IR K--R S

(If I + 1 = A, i.e., K > R(A-1), the above expression is zero, as it should be.) As in

13
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Theorem 3, A multiplied by one minus this probability is the expected number of columns
with at least one black circle. Substituting LK/RJ for I yields the desired formula.

(5) There are (equally likely) ways that the K black circles can be chosen.

Consider any particular column--it has R circles. The number of ways the K black circles

can be chosen so that none of these R circles is black is (RAJR. Thus, the probability

that a particular column contains no black circle is

(R(A-l) VRA'I
K ( K )"

As in Theorem 3, the expected number of columns with at least one black circle is A

multiplied by one minus the above probability; the desired formula follows forthwith.

(6) If [K/AJ 2t 1 (i.e., if K > A) then at least one row will be completely filled with

black circles and all A columns will contain at least one black circle. If K < A, then LK/AJ

= 0 and K-ALK/AJ = K; one row is filled with K circles, exactly K columns contain

exactly one black circle each, and the remaining columns contain no black circles. The

desired result follows forthwith.

2. Exoected Successful Sorties

Theorems 7 through 12 are proved below.

(7) Let M = K/R; M is assumed to be integer. The white circles not under a black

circle are precisely those white circles in columns that contain no black circle. There are
A-M such columns; each has R white circles. The formula follows forthwith.

(8) Let I = [K/Rj. If K/R is an integer, then the process is like the process of

Theorem 1 and thus the formula of Theorem 7 will apply. Theorem 8 will thus first be
proved assuming that K/R is not an integer, and it will then be shown that if K/R is an

integer, the formula of Theorem 8 reduces to the formula of Theorem 7. Of course the
assumption is still made that K, R, and A are positive integers and K _ RA. If K/R is not

an integer, these assumptions imply that I < A-1 and 1 < K-RI < R-1.

The process described in Theorem 2 (which is used for Theorem 8) results in I

columns completely filled with black circles, A-I-1 columns that are completely white

circles, and one column that contains G=K-RI black circles. Let the random variable N be

14
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the number of white circles in this column that are not located under a black circle. N can

assume values between zero and R-G, inclusive. The expected value of N is

E[N] = 2 P(N>n) =' ' P(N>_n).
n=l n=l

For each n from 1 through R--G, N > n if and only if the top n circles of the column are all

white. The probability of this equals the number of choices of G of the R circles where the

top n circles are white divided by the total number of ways of choosing G of the R circles

in the column. I.e.,

P(N'n) = G n 3 "

Then

E[N] = /R R Rn

It can be shown by standard combinatorial methods that the indicated sum in the above

expression is equal to ( ; this yields

E[N] - R-G = R-K+RI

G+1 K-RI+I

(Note that E[N] might or might not be greater than one, depending on the relative values of

R and G.) The overall expected number of white circles in the array that are not located

under some black circle is then E[N]+R(A-I-1), i.e.,

R-K+RI + R(A-I-l)
K-RI+ I

which equals the formula S2 (A,R,K) as stated. If K/R is an integer then K=RI and the

formula above becomes equal to the formula RA-K developed in Theorem 7.

(9) Consider any particular column. The circle at any particular row location will

be black with probability p = M/A = K/(RA). Different rows are treated independently.

Thus the probability that the column contains exactly k white circles at first and then a black

circle is

(1-p)p k=l.....R-l, S

15
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and the probability that the column contains only white circles (i.e., R white circles) is

(I- p)R.

Thus, the expected number of white circles in a column that are not located under a black

circle is

2. k(1-p)kp + R(l-p)R .
k=1

By the Proposition in Section B, this formula equals

l-(,1-p)R].

The expected number of white circles in the whole array that are not located under a black

circle is then A times the number in any particular column (even though different columns

are not independent). Replacing p by K/(RA), the result is S3(A,R,K) as stated, namely

A (RA-K) [ -(I-)R .
K RA

The proofs of Theorems 10, 11, and 12 all use the following notation. Consider a
specific column, call it column j, and let the (integer-valued) random variable N represent

the number of white circles located at the top of column j. That is, for 0 5 n < R-l, N=n

precisely when column j has a white circle in rows I through n and a black circle in row

n+l; N=R means that column j contains only white circles. At the outset, by symmetry, all

columns are treated identically, thus the overall expected number of white circles not

located (vertically) under some black circle is equal to AE[N]. Also,

E[N] = P(N>_n).
n=-1

Each proof derives the appropriate formulas for P(Ntn), evaluates the sum E[N], and

multiplies by A to obtain the final formula Si(A,R,K) (for i = 4, 5, and 6, in turn).

(10) Let I = LK/RJ and G = K-RI. Any realization of the experiment results in G

"dark rows," each containing (exactly) 1+1 black circles, and R-G "light rows," each

containing I black circles. The locations of the dark rows are a size-G random sample from
{ 1,...,R}. To find P(N>_n) (for n=l,...,R) define the following events:

16
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Wn--For each (all) of the top n rows of the array of circles, the circle in column

m location j is white,

D=--Exactly m of the top n rows of the array are "dark" (and the remaining n-m

rows are "light") (defined for m=O,...,n).

Note that Wn is simply the event Nn, as described above. A "light" row has a white circle
* (A-1),(A~

in column location j with probability I - 1/A (i.e., I )/ I )) and a "dark" row has a

white circle in column location j with probability I - (I+ 1)/A. (By the assumptions, I 4

A-I unless K=RA, in which case the entire array consists of black circles. Let us not

consider this vacuous case until the end of the proof.) Furthermore, the events that 0

different rows have white circles in column j are independent. Thus

P(Wn 1=Pnm) I - 1+1 M I - J

The number of dark rows in the top n rows of the array follows a hypergeometric

distribution, i.e.,

P(Dnm) =M -

(Of course Dnm will not occur if m > n, or m > G, or m < n-(R--G). But in these cases, 0

one of the combinatorial expressions in the numerator of the above expression will not

make sense, and should be interpreted as zero.) Thus P(Wn) = P(N>_n) equals

iP(Wnl DnW P(Dnm)•

m--O

This sum can be put in the form of the z-transform of the hypergeometric distribution, and

does not appear to have a closed form expression. Further summing on n and multiplying

by A yields the formula S4 (A,R,K) stated in the theorem.

If K/R is an integer, then G is zero and only the m=O term in the inner sum is
counted. Substituting K/R for I, S4(A,R,K) then reduces to

17
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evaluating this geometric series yields the formula S3(A,R,K). In the further special case

K=RA (continuing to assume that K, R, and A are positive integers), this formula is zero

(as the expected number of successful sorties should be).

(11) This proof treats the cases K 2 R(A-1) and K < R(A-1) separately. With

suitable interpretation, the formula developed in the latter case will then be found to be

correct for th former case also.

If K >- R(A-1), then N can assume values between zero and RA-K, inclusive. By

the nature of the experiment

P(N>_n) = ,RAn (RA) n=0,...RA-K.

If K = RA, E[N] is clearly zero. Otherwise (i.e., if R(A-1) 5 K < RA), then

K ~ n=*E[N-] = 1 K ,~

By standard combinatorial methods (as in the proof of Theorem 8) the indicated sum is

equal to ( J. Substituting, simplifying, and multiplying by A yields that the overallK+I

expected number of white circles not located under some black circle equals

A(RA-K)/(K+ 1).

This formula also makes sense for the case K=RA.

If K < R(A-1), then N can assume values between zero and R, inclusive. For

n=O,. ..,R, P(N'>n) is the same as given above, thus

E[N] = Ki4RJ n= KR~n

To evaluate the indicated sum, first note that for any positive integers G and M,

M-Z(GrnJ 4G[+ M )M=0 G )=G+l

18
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(This result can be proved by induction on M.) Substituting m=RA-K-n in the expression

for E[N] results in the indicated sum being equal to

RY~-1 rK+mn
m=RA-K-R

which by the above result equals

After simplification, AE[N] (i.e., the expected number of white circles not located under
any black circle) is then

A -R
A(RA-K) A lK+Ii

(K+1) 
(RA)

which is formula S5(A,R,K). Note that the first term of this expression is the same as the

expected number of white circles not located under any black circle in the case K _ R(A-1).
Also, if K 2t R(A-1), the numerator of the second term does not make sense and should be
regarded as zero. Thus the formula S5(A,R,K) is correct for all values of K (between 1

and RA, inclusive).

(12) Let C = LK/AJ. The two cases K/A an integer and K/A not an integer will be S

treated separately. The formula developed in the latter case will then be shown to be correct
in the former case also.

If K/A is an integer, then C = K/A. Assume that C < R-l; the vacuous case
K = RA will be treated presently. Any realization of the experiment results in C rows of

the array completely filled with black circles, with the remaining R-C rows having no black
circles. The locations of the C "complete" rows are a size-C random sample from
{1,...,R). The event N_n will occur precisely when all C complete rows are located

(strictly) below row n. Thus 0

P(N_>n) = CnV C
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for n--O,... ,R-C; it is clear that N cannot assume values strictly greater than R-C. Then

(R

As in the proofs of Theorems 8 and 11, the indicated sum equals After

simplification, AE[N] becomes equal to

A(R-C)I(1 +C).

If K/A is not an integer, then let L = K-AC (where C = LK/AJ). It is clear that L is
(an integer) between 1 and A-i, inclusive. The experiment results in C "complete" rows as
before, one "incomplete" row containing L black circles, and R-C-1 rows containing no
black circles. (It is clear that C 5 R-1.) The random variable N can (again) take on values
between zero and R-C, inclusive. For each n in this range, define the following events:

Tn--all complete rows are located strictly below row n,

In--the incomplete row is located strictly below row n,

In--the complement of In, i.e., the incomplete row is located at row n or above, and

Vj--the incomplete row has a white circle at column location j.

The event N->n is the disjoint union of the events ThnI and TlnV F By the nature of

the experiment Vj is independent of In and Tn (for all n), and

P(Vj) = 1- [( L L]

=I -- L/A.
Since the complete and incomplete rows are randomly (uniformly) chosen from the R
rows,

P(Tn) = LRCn/ J n=l,...,R-C.

20



(Tn cannot occur for n > R-C.) Given Tn, then of the R-C rows that are not complete,

INi R-n-C are located strictly below row n. Since the "incomplete" row is selected uniformly

from the R-C "not complete" rows,

pIT) R-n-C
R-C

Combining the above results yields

P(N>-n) = P(Tnln) + P(TnInVj)

R-n-C (R n + n CRn ~A

R C R C~

Then

E[N] = P(N>-n) = 1  ] n.n=1 = A(R-C) - C

As indicated in the proofs of Theorems 8 and 11,

*Y RR-n ~R~
n=1 C+I

The second indicated sum can be evaluated by setting, for each n,

In ( cn) = 'I (7= C

interchanging the order of summation, and utilizing the technique outlined in the proof of

Theorem 11. The sum turns out to be equal to,+ . After simplification,
yC+2)

E[N] - R-C L(R+I)
C+ I A(C+2)(C+ 1)

Multiplying by A and substituting [K/AJ for C and K-ALK/AJ for L yields the formula

S6(A,R,K) as stated.

Note that if K/A is an integer, then L as defined above is zero. In this case, the

second term of S6(A,R,K) is zero and first term, A(R-C)/(C+1), is the formula for AE(N]
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that was derived earlier for the case K/A an integer. If K=RA, the whole expression is zero
(as the expected number of successful sorties should be). Thus the formula S6 (A,R,K) is

correct for all values of K between zero and RA.

3. Ineoualities Relating to Aircraft Kills

Theorems 13 through 19 are proved below.

(13) It is assumed that K < RA, so K/R . A. Since A is assumed to be integer,
[K/Ri < A. Since R is assumed to be a positive integer, then R > 1, and thus K/R _< K.
Since K is assumed to be integer, then [K/Ri _ K. Thus [K/Ri, and, of course, K/R, are

less than or equal to min(K,A).

(14) It is desired to prove that N3(A,R,K) < N6(A,R,K), i.e.,

* A[1- I- J min(K,A). (6)

If A < K, the theorem is clearly true, as Assumption Set I implies that the term in brackets
on the LHS of (6) is less than or equal to 1. For the rest of this proof assume that K < A;
the theorem is then equivalent to the statement

I- JL R - (7)

Consider the function

= I- (K/A)]I

It is clear that f(x) is sensible for x ! 1 and that

f(1)= I-K
A

If it can be shown that f(x) is a nondecreasing function of x for x > 1, then since R > 1,
inequality (7) and the theorem will follow. To show that f(x) is nondecreasing, it will

suffice to show that the derivative f'(x) is nonnegative for x -e 1. By standard procedures,

it can be shown that
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Since it is assumed that K < A and x 1, the first term in the above expression is strictly
positive and thus f(x) is nonnegative if and only if the term in brackets is nonnegative. Let

Ax
Ax-K'

y is greater than one, and the nonnegativity of f'(x) follows from the elementary inequality

In y_5 y-1 for y _ 1 .

(15) It is clear from inspection that all the formulas under consideration do not

exceed A. If K < A--i.e., the number of black circles in the array is less than the number of
columns--then in any realization of the experiments described in Theorems 4 and 5, at most
K columns will have at least one black circle. The expected number of columns with at
least one black circle is thus less than or equal to K. •

(16) Since K, R, and A are positive and K < RA, K(RA) and 1 - K(RA) are

quantities that lie in the interval [0,1]. Since R > 1,

RA - RA
" R•

which implies K !5 I- --__,
RA ~RA)

which implies K < A 1R QED.R RA)J

(17) Let I = LKiRJ. If K/R is an integer, this theorem reduces to Theorem 16 so
assume that K/R is not an integer. Then FK/Ri = 1+1 and the quantity K-RI is greater than

zero; since it is an integer, it is greater than or equal to 1. The statement that N2(A,R,K) <

N4(A,R,K) is then equivalent to

I RiAKLJ. (8).-I +

By Theorem 13, 1+1 < A, so I - (1+1)/A is an element of [0,11, and since K-RI > 1, 0
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Since K 5 RA, the first term on the LHS of (8) is also an element of [0,1], and (8) follows

forthwith.

(18) If K/R is an integer, then LK/RJ = K/R and N3(A,R,K) = N4 (A,R,K). Thus

assume that K/R is not an integer and let I and g denote the integer and fractional parts of
K/R, respectively (so K/R = I + g); note that 1+1 A. Then N4(A,R,K) equals

Recall that N3(A,R,K) is

I 
A[1~1-~JR]

To prove that N3(A,R,K) -N4 (A,R,K) it will suffice to prove that

This is clearly true if 1+1 = A; otherwise it is equivalent to the statementln(l----- > (1-g) ln~l-I/ + g ln(-I-L---l

This latter condition follows from the concavity of the function In x and the fact that

I- 1-. = (1-g)(I- -J + 1+RA A.•

(19) The four cases are treated separately, in turn.

(i) In the trivial case K > R(A-1), N4(A,R,K) = N5(A,R,K) = A, as stated in the theorem.

Fiom now on, assume that K !5 R(A-I) so that N5(A,R,K) is defined by the first

formula given. Then N4 (A,R,K) N5(A,R,K) is equivalent to the statement
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K K A4 (9)

where, as before, I = LK/RJ. The left hand side of (9) is expressible as

(RA-R)! (RA-K)! (10)
(RA)! (RA-R-K)!

which can be expressed as
R-1 ( RA-K-m

-11,RA--m) 011)

m--O

and can also be expressed as

H ' • (12)
n=O

In the right hand side of expression (9), 1 - I/A = (RA-RI)/(RA), and I - (I+1)/A =

(RA-RI-R)/(RA).

(ii) If K/R is an integer, then K = RI. Using expression (11), expression (9) is then

equivalent to

R- (A-Km ) -  K R (13)
m=0•

By the assumptions on A, R, and K, each term of the indicated product is a proper fraction,

and the ratio of two positive integers, thus for each m from 0 to R-1,

0 < RA-K-m < RA-K
RA-m RA

Taking the product over m from zero through R-1 yields the desired result.

(iii) If K < R then I = 0. Using expression (12), expression (9) is then equivalent to

K-i RA-R-n ) <  K (14)

n=O
250
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Since it is assumed that K < R(A-1), then for each value of n from 0 through K-i,

(RA-R--n)/(RA-n) is a proper fraction; this fraction is less than or equal to (RA-R)/(RA1.

Statement (14) follows forthwith.

(iv) Using expression (11), expression (9) is equivalent to the statement

S A- +Rl K-RI

which is equivalent to

( -R-K-m) (RA-RI) AR-KRI< ( (15)

Recall the elementary fact that for positive (real) quantities b and d, and nonnegative
real a and c,

and a :5 c L : L (16)
and b-a = d-c b d

The proof proceeds by constructing, for each i between zero and R-1, inclusive, quantities
ai, bi, ci and di that satisfy the constraints on the LHS of (16). It will also be shown that

bi - ai = i, for each i, and that

la is the numerator of the LHS of (15),

ribi is the denominator of the LHS of (15), and

-I(cj/d.) is the RHS of (15),

where all indicated products are from i = 0 through R-1. The desired inequality (15) will

then follow forthwith from the "elementary fact." To start, let ci = RA-i and di = RA, for

i = 0 through R-1; note that di - ci = i, for all such i.

Consider the exponents of the terms in the denominator of the LHS of (15). It is

assumed that K/R is not an integer, thus K/R > I and K-RI __ 1. But also K-RI =
R<K/R>, and thus is strictly less than R, as <K/R> is strictly between zero and one. Thus

K-RI < R-1 and R-K+RI > 1. Thus both of the indicated exponents are positive integers.

Since K < R(A-1) and RI < K, the quantities (RA-RI) and (RA-RI-R) also are positive

integers.
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Let (the nonnegative integer) ih be such that the term RA-K-fii in the numerator of

the LHS of (15) is equal to RA-RI-R. It is clear that such an ifi exists, namely

i--= R - (K-RD).

It is clear from the properties of K-RI that i > 0 and ii < R-1. The cases fii = R-1 and

R< R-1 are treated separately.

Case (a): fi = R-1

This implies that K-RI = 1, and thus the LHS of (15) becomes
RA -K 4R -1 R-2 RA-K-m)( 7

RA-RI-R i) RA-RI) (17)

Further, the numerator and denominator of the first term of (17) are equal; in the mth term

of the indicated product (for m--O,...,R-2), the denominator-minus-numerator difference is

(RA-RI) - (RA-K-m)

which equals

(K-RI) + m

or

1+m

Thus, let

a0 = RA -K - (R-1)

b0 =RA-RI-R

a. = RA -K -(i-1) i= ...,R-1

b. = RA - RI i-'I....R-1

and apply the construction (16) for each i.

Case (b): ffi < R-2

In this case, the LHS of (15) can be written as

R A-R-R mRA - + + RA-RI-R) (18)
Lm=O lAR- .n~

ih terms 1 term R-(-+ 1) terms
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By the definition of ifi, the numerator and denominator of the middle term of (18) are equal

(and are nonzero). Since RI < K, RA-K-.-n < RA-RI for any nonnegative integer m, thus

each term in the first indicated product of (18) is a proper fraction (and each numerator is

positive, since K : RA-R). For the mh term in this product, the denominator-minus-

numerator difference

(RA-RI) - (RA-K-m)

equals

(K-RI) + m;

as m varies from 0 through ii -1, this difference assumes values of K-RI through R-1,

successively.

Now consider the second indicated product of (18). If m > fii, then by the

definition of Th

m > R-K+RI

thus

RA-K-m < RA-RI-R

so each term in the indicated product is a proper fraction (and, again, each numerator is a

positive integer). The denominator-minus-numerator difference can be shown to equal

m-fii;

as m varies from ii+I through R-1, this difference takes on the values I through

(K-RI) - 1, successively. (Since it is assumed that i5 < R-2, K-RI _ 2.) Therefore, let

ao = RA-K- ii = RA-RI-R

b0 - RA-RI-R

a, = RA - K - (m-+i)

bi = RA-RI-R i=l .... R-(+I)

a, = RA - K - (i-[K-RI]) 1

b. = RA-RII i=R-i .... R-1

(note that R-fii = K-RI) and apply the construction (16) for each i.

28



4. Inegualities Relating to Expected Successful Sorties

i Theorems 20 and 21 are proved below.

(20) Let I=t.K/RJ. Recall that

S2 (A,R,K) = R(A-I-1) + R-K+RI
K-RI+I

By the definition of I, the indicated fraction in the expression for S2(A,R,K) is less than or

equal to R-K+RI, and thus

S2(A,R,K) < R(A-I-1) + R-K+RI = RA-K = S,(A,R,K),

which was to be proved. 0

(21) If K = RA, both expressions SI(A,R,K) and S3(A,R,K) are zero, so assume

that K < RA. Then the statement that

S3(A,R,K) < SI(A,R,K)

is equivalent to

KK (19)

* 0

The assumptions of the theorem imply that the LHS of (19) is always nonnegative. If
K/A _> 1, then the RHS of (19) is nonpositive and (19) (and the theorem) follow forthwith.

*D Note that expression (19) is the same as expression (7), which appeared in the proof of
Theorem 14 in Section D.3, above. By the methods of the proof of Theorem 14,
expression (19), and thus Theorem 21, are also true if K/A < 1.

E. AN EXCURSION--A SIMPLE "NONDETERMINISTIC" EXPERIMENT

The experiments of Section C all involve choosing exactly K circles from an array
of circles. As an excursion, this section examines an experiment that is in some sense the
simplest case in which a nondeterministic number of circles is chosen from the array.
Some correspondences between this experiment and the results of Sections B and C are
indicated. Other such "nondeterministic" experiments could be developed and explored,

but that is not the focus of this paper.
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Recall the array of circles shown in Figure 1; consider a general such array that is

R rows by A columns (R and A are positive integers). Let K be some positive integer less

than or equal to RA, define p = K/(RA), and consider the following experiment:

Color each circle in the array black with probability p, treating different
circles independently of one another.

The number of black circles in the array is then a binomially distributed random

variable (with parameters RA and p); the expected number of black circles is K.

A column in the array contains at least one black circle with probability 1-(l-p)R,

thus the expected number of columns containing at least one black circle is

A [1-(1-p)R], S

which is the same as the formula given in Section B for the expected number of aircraft

killed (in the combat process considered there). Substituting K/(RA) for p yields the

formula N3(A,R,K) of Theorem 3 (Section C. 1).

The expected number of white circles not located (vertically) under some black

circle can also be derived. For n=O,...,R-1, any particular column will have exactly n

white circles at the top with probability (1-p)np, and all R circles of a column will be white

with probability (l-p)R. The expected number of white circles at the top of a column can

then be evaluated as described in the proof of the Proposition of Section B. The overall

number of white circles not located under some black circle is A times the expected number

of white circles at the top of any particular column, or
A(1-p) I _ (l-p)R]

p
which is the same as expression (5) in the Proposition of Section B. Substituting K/(RA)

for p yields the formula S3(A,R,K) of Theorem 9 (Section C.2).

The correspondence between the experiment just described and the combat process

described in Section B is clear, and thus it is not surprising that the indicated formulas are

the same. The equality of the formulas for the expected number of columns containing a!

least one black circle and the expected number of white circles not located under some black

circle with the formulas N3(A,R,K) and S3(A,R,K) is more interesting to note, especially

because N3(A,R,K) has been proved to lie in the middle of the range of formulas

Ni(A,R,K) (see Section C.3) and a similar result might well hold for S3 (A,R,K). (That is,

the "nondeterministic" experiment produces results that are "not at the extremes" of the

"deterministic" experiments.)
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This equality of formulas may be essentially coincidental, however. The

experiment described in Theorem 3 and the experiment just described are somewhat

different. Not only does the former experiment choose exactly K circles from the array, it

assumes that K/R is an integer. And even if K/R is an integer, the equality of formulas is

an equality of expected values only; higher order moments of the number of columns with

at least one black circle and the number of white circles not located under some black circle

are not necessarily the same for the two experiments.

F. CONCLUSIONS

All of the formulas developed in Section C in the context of abstract probability

problems represent possible formulas for computing a number of aircraft killed from a

number of sorties killed. The spectrum of inequalities between these formulas, as given by

Theorems 13 through 19 of Section C, provides potentially useful information for the

modeling of sorties and attrition. In particular, the commonsense formula

NI(A,R,K) = K/R, which is the same as equation (3) of Section A and which has been

used in a number of models, has been shown to be lower than several other reasonable

formulas. In some cases another formula may be more appropriate. For example, Section

B has related the formula N3(A,R,K) (which is also equation (4) of Section A) to a specific

combat process.

It should be recalled, however, that evcn th:g - the sense of

Theorems 13 through 19, K itself, as determined by an attrition equation such as equation

(2) of Section A, may overestimate the actual number of sorties killed (possibility for the

reasons explained in Section A). One way of avoiding this problem is to adapt the "shoot-

then-shoot-back" scheme (which is frequently used in the NAVMOD model [4] to compute

numbers of sorties killed') to make use of the formulas developed in Section C.2 for the

expected numbers of successful sorties. If when a side suffers attrition, only that side's 0
"successful sorties" (rather than the full number of surviving--i.e., "non-killed"--sorties)

are allowed to shoot back, the overall number of sorties killed, K, may be lower than in the

regular "shoot-then-shoot-back" procedure. In this case, the full range of formulas in

Theorems I through 6 can be considered as reasonable candidates for converting sorties 0

See Reference [4], Chapter IV, Sections A.I.c, A.2, and B.4 for a description of the "shoot-then-shoot-

back" attrition procedure. References [5], [6], and 17] provide additional details concerning this 0
pmcedure.
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killed to aircraft killed; the dynamics of the particular combat situation being modeled may

suggest that certain of these formulas are especially appropriate.

One problem to be explored further is to prove (or give counterexamples for) the

inequalities between the Si(A,R,K) that were mentioned at the end of Section C. As stated

earlier, these formulas in some sense correspond to possible ways of computing the
number of successful sorties flown.

A more general problem is to compare the effects on a combat simulation of: 1)

employing formulas such as those developed in this paper, as opposed to; 2) the

straightforward method of assessing attrition more frequently, i.e., reducing the length of

the time period so that sortie rates per time period never exceed 1.0. Are there

circumstances in which one of these methods is to be preferred over the other?

Finally, some additional issues concerning the computation of the number of sorties
killed, K or Ts , should be addressed. For example, note that formulas (1) and (2) of

Section A use the same effectiveness parameters and the same functional form. If it is

assumed that formula (1) is reasonable when sortie rates are (less than or) equal to unity,

does this necessarily imply that (2) is reasonable if sortie rates exceed unity? If not, what
are some reasonable alternatives for computing Ts?

32

I!



I
REFERENCES

[1] Anderson, L.B., J. Bracken, J.G. Healy, M.J. Hutzler, and E.P. Kerlin, IDA
Ground-Air Model I (IDAGAM 1), IDA Report R-199, Institute for Defense Analyses,
Arlington, VA, May 1974.

[2] Anderson, L.B., D. Bennett, and M.J. Hutzler, Modifications to IDAGAM I. IDA
Paper P-1034, Institute for Defense Analyses, Arlington, VA, June 1974.

[3] Anderson, L.B., J. Bracken, and E.L. Schwartz, Revised OPTSA Model, IDA Paper
P-1111, Institute for Defense Analyses, Arlington, VA, September 1975.

[4] Anderson, L.B., and E.L. Schwartz, NAVMOD: A Naval Model. Volume 1: Main
Report and Volume II: Appendices, IDA Report R-278, Institute for Defense
Analyses, Alexandria, VA, October 1985.

[5] Anderson, L.B., An Initial Postulation of a Relatively General Attrition Process,
Working Paper WP-20 of IDA Project 2371, Institute for Defense Analyses,
Alexandria, VA, October 1983, revised May 1984. Also appears as Appendix A of
Volume 3 of The JCS Forces Planning Model. Part [I: Effectiveness Module
Documentation, IDA Report R-309, Institute for Defense Analyses, Alexandria, VA,

5in draft.

[61 Anderson, L.B., Some Concepts Concerning the Incorporation of Multiple Attrition
Assessments and Night Combat into IDAGAM, Working Paper WP-8 of IDA Project
3609, Institute for Defense Analyses, Arlington, VA, October 1980.

*1 [71 Karr, A.F., Some Ouestions of Approximation Involving Lanchester and Binomial
Attrition Processes, Working Paper WP-10 of IDA Project 2371, Institute for Defense
Analyses, Arlington, VA, January 1981.

R-1



DISTRIBUTION

*I IDA PAPER P-2139

ON CONVERTING SORTIES KILLED TO AIRCRAFT KILLED IN COMBAT
MODELS THAT USE ATTRITION EQUATIONS

60 Copies

Dr. Jerome Bracken
5 Magnolia Parkway
Chevy Chase, MD 20815

Dr. Joshua Epstein
The Brookings Institution
1775 Massachusetts Ave., N.W.
Washington, D.C. 20036

Dr. Ray Jakobovits
Metron, Inc.
1485 Chain Bridge Road
McLean, VA 22101

Professor Alan F. Karr
Department of Mathematical Sciences
The Johns Hopkins University
Baltimore, MD 21218

Dr. Royce Kneece
Office of the Secretary of Defense
Room 1 E466, The Pentagon

*I Professor Richard M. Soland
Department of Operations Research
School of Engineering and Applied Science
George Washington University
Washington, D.C. 20052

Office of the Secretary of Defense
OUSDRE (DoD-IDA Management Office)
1801 N. Beauregard Street
Alexandria, VA 22311

Defense Technical Information Center
Cameron Station
Alexandria. VA 22314

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161 1

DL-1

| S



Distribution List (cont'd)
Page 2

Department of the Air Force
Assistant Chief of Staff, Studies and Analyses
Rm. 1E388, The Pentagon

ANSER
Attention: Library
1215 Jefferson Davis Highway
Arlington, VA 22202

Department of the Army
Deputy Under Secretary (Operations Research)
Room 2E660, The Pentagon

Hudson Institute, Inc.
Center for Naval Analyses
Attention: Library
P.O. Box 16268
Alexandria, VA 22302-0268

U.S. Army Concepts Analysis Agency
Attention: Library
8120 Woodmont Avenue
Bethesda, MD 20814-2797

Department of Defense
National Defense University
Attention: Library
Fort McNair
Washington, D.C. 20319-6000

Department of the Navy
Naval Postgraduate School
Attention: Library
Monterey, CA 93943-5100

Office of the Joint Chiefs of Staff
Force Structure, Resource, and Assessment Directorate (J-8)
Capabilities Assessment Division
Room 1D940, The Pentagon

The RAND Corporation
Attention: Library
2100 M Street, N.W.,
Washington, D.C. 20037

DL-2

4 aRmn l llniill~lI ninn l l md / i/



Distribution List (cont'd)
Page 3

The RAND Corporation
Attention: Library
P.O. Box 2138
Santa Monica, CA 90406-2138 1

Department of the Air Force
* Attention: Library

Tactical Air Command (TAC)
Langley AFB, VA 23665-5001 1

Vector Research, Inc.
Attention: Library
P.O. Box 1506
Ann Arbor, Michigan 48106 1

Institute for Defense Analyses
1801 N. Beauregard Street
Alexandria, VA 22311

Attention: General W.Y. Smith I
Phillip Major 1
William Schultis 1
Eleanor Schwartz 8
Lowell Bruce Anderson 1
Robert Anthony I
Robert Atwell 1
Peter Brooks 1
William Cralley 1
Ronald Enlow 1
Arthur Fries 1

* Jeffrey Grotte 1
Edward Kerlin I
Graham McBryde 1
Frederic Miercort 1
Merle Roberson I
Mitchell Robinson 1
Alan Rolfe I
Leo Schmidt 1
Jeffrey Tate I
Nancy Toma 1
John Transue 1
Control and Distribution 10

DL-3


